domingo, 25 de julio de 2010

TRABAJO FINAL: ACEITES ESENCIALES

DEFINICION

Los Aceites Esenciales o esencias vegetales son productos químicos que forman las esencias odoríferas de un gran número de vegetales. El término aceite esencial se aplica también a las sustancias sintéticas similares preparadas a partir del alquitrán de hulla, y a las sustancias semisintéticas preparadas a partir de los aceites naturales esenciales.

Los aceites esenciales son líquidos volátiles, en su mayoría insolubles en agua, pero fácilmente solubles en alcohol, éter y aceites vegetales y minerales. Por lo general no son oleosos al tacto. Pueden agruparse en cinco clases, dependiendo de su estructura química: alcoholes, ésteres, aldehídos, cetonas y lactonas y óxidos.

COMO SE OBTIENEN LOS ACEITES ESENCIALES

Los aceites esenciales proceden de las flores, frutos, hojas, raíces, semillas y corteza de los vegetales. El aceite de espliego, por ejemplo, procede de una flor, el aceite de pachulí, de una hoja, y el aceite de naranja, de un fruto. Los aceites se forman en las partes verdes (con clorofila) del vegetal y al crecer la planta son transportadas a otros tejidos, en concreto a los brotes en flor. Se desconoce la función exacta de un aceite esencial en un vegetal; puede ser para atraer los insectos para la polinización, o para repeler a los insectos nocivos, o puede ser simplemente un producto metabólico intermedio.

  • PROCESO DE OBTENCION:

Los aceites esenciales se obtienen por uno de los métodos siguientes:

    • Destilación en corriente de vapor

    • Extracción con disolventes volátiles,

    • expresión a mano o a máquina. (aceite de limón)

    • enfleurage, proceso en el cual se utiliza grasa como disolvente.

Hoy los aceites esenciales sintéticos u obtenidos de fuentes naturales por cualquiera de esos cuatro métodos, se purifican normalmente por destilación al vacío.

PRODUCTOS

En un aceite esencial pueden encontrarse hidrocarburos alicichcos y aromáticos, asi como sus derivados oxigenados; Ej., alcoholes, aldehidos, cetonas, ésteres, etc,, substancias azufradas y nitrogenadas. Los compuestos nos frecuentes derivan biológicamente del ácido mevalónico; se les cataloga como terpenos : menoterpenos (C10) y sesquiterpenos (C15).

Propiedades Fisico-Quimicas De Los Aceites Esenciales

Las propiedades físico-químicas de los aceites esenciales o esencias son muy diversas, puesto que el grupo engloba substancias muy heterogéneas, de las que en la esencia de una planta, prácticamente puede encontrarse solo una (en la gaulteria hay 98-99 % de salicilato de metilo y la esencia de canela contiene más de 85 % de cinamaldehído) o más de 30 compuestos como en la de jazmín o en la de manzanilla.

El rendimiento de esencia obtenido de una planta varía de unas cuantas milésimas por ciento de peso vegetal hasta 1-3 % . La composición de una esencia puede cambiar con la época de la recolección, el lugar geográfico o pequeños cambios genéticos. En gimnospermas y angiospermas es donde aparecen las principales especies que contienen aceites esenciales, distribuyéndose dentro de unas 60 familias. Son particularmente ricas en esencias las pináceas, lauráceas, mirtáceas, labiáceas, umbelíferas, rutáceas y asteraceas.

Tipos de Estructuras en los Aceites Esenciales











Propiedades fisicas de los aceites esenciales : Los aceites esenciales son líquidos a temperatura ambiente, muy raramente tienen color y su densidad es inferior a la del agua (la esencia de sasafrás o de clavo constituyen excepciones). Casi siempre dotadas de poder rotatorio, tienen un indice de refracción elevado. Solubles en alcoholes y en disolventes orgánicos habituales, son liposolubles y muy poco soluble en agua, son arrastrable por el vapor de agua.

USOS DE LOS ACEITES ESENCIALES

Los aceites esenciales se utilizan para dar sabor y aroma al café, el té, los vinos y

Las bebidas alcohólicas. Son los ingredientes básicos en la industria de los perfumes

y se utilizan en jabones, desinfectantes y productos similares. También tienen

importancia en medicina, tanto por su sabor como por su efecto calmante del dolor y

su valor fisiológico.













domingo, 18 de julio de 2010

REACCIONES DE OXIDO REDUCCIÓN

Las reacciones de oxido reducción son reacciones de transferencia de electrones.

El siguiente esquema ilustra claramente las consecuencias de tal transferencia de electrones. Se produce una reacción, ilustrada en el sentido directo, dónde las especies modifican su carga eléctrica o Número de Oxidación.







Los estudiosos han dividido el proceso en dos partes:

OXIDACION: es una pérdida de electrones y la especie que experimenta tal pérdida de electrones aumenta su Número de Oxidación o Carga eléctrica





REDUCCION: es una ganancia de electrones y la especie que experimenta tal ganancia de electrones disminuye su Número de Oxidación o Carga eléctrica





Cada uno de los esquemas muestra la semirreacción que lo representa.

Si las semirreacciones se suman, esto es, 1) se reunen los términos de las ramas izquierdas y se igualan a los términos de las ramas derechas y 2) se cancelan los términos iguales o repetidos a ambos lados de la igualdad. La reacción resultante es la global, la reacción de oxido-reducción o redox.

A0 = A+ + e- Semirreacción de oxidación

B0 + e- = B- Semirreacción de reducción

______________________________________

A0 + B0 + e- = A+ + e- + B-

A0 + B0 = A+ + B-

Toda semirreacción correctamente escrita presenta el correcto......

a) BALANCE DE MASA ( Ecuación equilibrada, número y tipo de átomos de la izquierda debe ser igual al número y tipo de átomos de la derecha.)

b) BALANCE DE CARGA ( Carga eléctrica total de la izquierda igual a la carga eléctrica total de la derecha )

REDUCTORES Y OXIDANTES

Completamos esta visión básica de las reacciones de oxido reducción con los conceptos de reductores y oxidantes, de gran importancia teórica y práctica.






LOS POTENCIALES STANDARD









Los potenciales eléctricos son de índole Intensiva por cuanto dependen de la reacción o del material o sustancia pero no del tamaño o masa de la misma.








En la Tabla el signo y el valor del potencial standard indican la tendencia y fuerza a que las semirreacciones ocurran. Así la tendencia a la oxidación del Na0 es muy alta ( recordaremos la reacción violenta del sodio metálico con agua) en cambio la tendencia a la oxidación del plata Ag0 es muy baja ( se usa como joyas o adornos). Así el Na0 es un reductor poderoso. El Cloro gaseoso es un oxidante poderoso, mirando la tabla, el potencial de oxidación -1,36 Voltios indica que la reacción inversa, es decir la reducción del Cl0 a Cl- es la tendencia predominante.

Dado tal significado para las semirreacciones y sus potenciales es absolutamente comprensible la presentación de las tablas de semirreacciones y potenciales de reducción, que aparecen en alguna literatura.








" Cuando una semirreacción se invierte; el potencial cambia de signo"

EL POTENCIAL ELECTRICO ASOCIADO A LAS REACCIONES REDOX

Aunque parezca sorprendente, a toda reacción redox se le puede asociar un potencial eléctrico que se deriva precisamente de los potenciales de las semirreacciones que la conforman:

Semirreacción de oxidación A0 = A+ + e- E0A

Semirreacción de reducción B0 + e- = B- -E0B

+_____________________________________________

A0 + B0 = A+ + B- ΔE0 = E0A + ( -E0B )

Por lo tanto a las reacciones redox se les asocia un potencial que es igual a la suma algebraica de los potenciales asociados a cada semirreacción. El significado del ΔE0 deriva del significado de los potenciales de semirreacciones.

LAS PILAS O CELDAS GALVÁNICAS

Corresponden a reacciones redox cuyo potencial eléctrico es positivo, ΔE0 > 0, es decir reacciones que (en el sentido directo) evolucionan espontáneamente liberando energía química a la forma de energía eléctrica.










LA ELECTROLISIS

Corresponden a reacciones redox cuyo potencial eléctrico es negativo, ΔE0 <> no evolucionan espontáneamente y que para forzar su ocurrencia se debe gastar energía electrica.

Es exactamente el proceso inverso o contrario que el de una pila







LA CORROSIÓN DE LOS METALES

La corrosión es en general el deterioro de materiales por acción del medio ambiente. Nos preocuparemos de la corrosión química que afecta principalmente a los metales. Desde luego, los potenciales standard de oxidación indicaran en forma general la tendencia a la corrosión de los diferentes metales. En la práctica hay muchas situaciones especiales como aquella del aluminio que se oxida fácilmente pero que luego la capa de oxido formada, muy compacta, impide posterior corrosión.

La corrosión de metales es consecuencia de reacciones redox entre el metal y agentes químicos presentes en el medio ambiente. La corrosión de fierro y de los aceros en general es de la mayor importancia. Esta corrosión tiene su primera causa en en caracter heterogéneo de los materiales. Las distintas fases tienen potenciales standard de oxidación diferentes y es precisamente este hecho el que provoca la formación de una infinidad de pilas en la superficie del metal con la ayuda de condiciones presentes en el medio ambiente. Las reacciones de estas celdas galvánicas destruyen el material y socavan las estructuras incrementando el efecto corrosivo.










Al recubrir el Fe con Zn, es éste el que se oxida y mientras exista se preservará el Fe (alfa)


EQUILIBRIO QUÍMICO

Recordemos, con la matriz de análisis, los aspectos más sobresalientes del ejemplo de presentación de la situación de equilibrio químico que vimos en la unidad anterior.







2 H2 + O2 = 2 H2O

t = 0 Situación inicial ( i ) 2 moles 1 mol 0 mol

Variación en moles = Δ n ( r ) - 2x -x 2x

tf = te Equilibrio ( e ) 2-2x 1-x 2x

2(1-x)

x es constante e indica la razón de transformación alcanzado el equilibrio y nos orienta de la posición del equilibrio.

Ya hemos expresado que, por convención, se acostumbra a analizar la situación de equilibrio arribando a ella desde los reactivos formales y que por otra parte esa situación de equilibrio es el resultado de la igualación en valor absoluto de las velocidades de reacción directa e inversa.














Esta constante de equilibrio, K eq, es de carácter más general o intensiva que x pues es igual a una expresión matemática cuociente de concentraciones de equilibrio y no depende de las particularidades extensivas de un sistema en particular. Mejor que x su valor nos indica la posición del equilibrio aunque ambas estén relacionadas.








SITUACIONES ESPECIALES DE EXPRESIONES DE CONSTANTES DE EQUILIBRIO

El estudiante debe observar que en la expresión de la constante de equilibrio aparecen las concentraciones de las sustancias que formalmente afectan las velocidades de reacción tanto directa ( en el denominador) como la inversa ( en el numerador ). Ya sabemos que en el equilibrio estas concentraciones no cambian espontáneamente pero si alguna de ellas variara provocaría el efecto de desigualar las velocidades directa e inversa y como consecuencia de ello la posición del equilibrio cambia a otro valor de x. Dicho de otra manera, en la expresión de la constante de equilibrio aparecen sólo las concentraciones de las especies que pueden variar significativamente y al hacerlo afectarán la posición del equilibrio. De esta forma se podrán comprender la mayor parte de los casos de las siguientes situaciones especiales:

EQUILIBRIOS QUE INVOLUCRAN REACTIVOS O PRODUCTOS GASEOSOS

La expresión de la constante de equilibrio de sistemas que presentan sustancias en estado gaseoso , sólo por convención y formalismo, cambia la concentración por la presión parcial de la sustancia gaseosa. La constante en función de la presiones parciales se llama Kp y aquella que mantiene la expresión en función de las concentraciones se llama, comparativamente Kc

EQUILIBRIOS QUE COMPROMETEN FASES CONDENSADAS EN SISTEMAS HETEROGÉNEOS.

Se trata del caso de sustancias que presentan pobre solubilidad entre sí o tienden a la inmiscibilidad.

La fase condensada o aquella que no corresponde a una concentración, no aparece en la expresión de la constante de equilibrio.

como por ejemplo el Br2 ( l ) en H2O:






EQUILIBRIOS QUE COMPROMETEN AL SOLVENTE.

Cuando una reacción involucra al solvente o medio en que se realiza la reacción este no aparece en la constante de equilibrio pues la variación de su concentración como consecuencia de la reacción es irrelevante frente al valor normal de su concentración . Recordemos que el agua pura de densidad 1g/mL o 1000 g/L es 1000/18 moles/L o 55,55 Molar

Ejemplo:







EQUILIBRIOS QUE PRESENTAN COMBINACIÓN DE EXPRESIONES ESPECIALES.

Observemos que la siguiente reacción presenta la combinación de varios casos de situaciones especiales de expresión de constante de equilibrio.





MODIFICACIONES DE LA SITUACIÓN DE EQUILIBRIO

PRINCIPIO DE LE CHATELIER

"Cuando un sistema que se encuentra en la situación de equilibrio químico es sometido a una modificación (por ejemplo una variación de temperatura, variación de la concentración de una de las especies presentes en el equilibrio, variación de la presión u otra ), busca una nueva posición de equilibrio y al hacerlo contrarresta la modificación"

EFECTO DE VARIACIÓN DE LA TEMPERATURA SOBRE EL EQUILIBRIO.

Antes de empezar a tratar el asunto propiamente tal, es necesario hacer ciertas precisiones en los diagramas de energía potencial versus coordenada de reacción. Existen dos tipos de diagramas:

a) los que corresponden a reacciones que liberan calor o reacciones exotérmicas en que las moléculas de reactivos almacenan más energía potencial que los productos y

b) los que corresponden a reacciones que absorben calor o reacciones endotérmicas donde las moléculas de los productos son las que almacenan más energía potencial que las de los reactivos.

En estos casos la energía almacenada se asocia, en vez de la energía potencial, a una función de estado termodinámica llamada entalpía o "contenido de calor" ( H ), que veremos con más detalle en otra unidad. Así en el transcurso de una reacción hay una variación de la entalpía o Δ H que corresponde al calor transferido desde el interior de las moléculas al exterior de ellas o viceversa.







EFECTO DE VARIACIÓN DE LA PRESIÓN SOBRE EL EQUILIBRIO.

En primer lugar debemos aclarar que este caso tiene importancia sólo en sistemas de reacción que presentan gases en situación de equilibrio químico. Recordaremos que en estos casos la constante de equilibrio se expresa en función de las presiones parciales de los gases reaccionantes y productos. Ahora bién, de la variación de las presiones parciales uno o varios gases participantes del equilibrio de trata precisamente este asunto.

¿ Cómo puede un sistema cerrado y adiabático contrarrestar una variación de presión ( compresión o descompresión por variación de volumen ) que afecta su situación de equilibrio?

Aunque a primera vista parezca extraño el sistema puede, en algunos casos, variar la presión interna variando la cantidad total de moléculas. ¿Cómo? si el sistema es cerrado. Precisamente variando la posición del equilibrio en aquellos sistemas en que la suma de los coeficientes estequiométricos de gases reactivos es diferente de la suma de los coeficientes estequiométricos de gases productos.

Ejemplo N2 (g) + 3 H2 (g) = 2 NH3 (g)

4 moléculas reaccionantes --- 2 moléculas producto

La reacción directa hace disminuir el número total de moléculas. Recordemos el caso particular ya estudiado.



















EFECTO DE INTRODUCIR O QUITAR UN CATALIZADOR.

Los catalizadores afectan, en principio, de igual forma tanto a la velocidad de reacción directa como a la velocidad de la reacción inversa. De esta forma su presencia o ausencia no afecta la posición del equilibrio.

EQUILIBRIO QUIMICO EN SISTEMAS GASEOSOS.

A continuación desarrollaremos un ejercicio de equilibrio que involucran gases y que nos permitirá aplicar la situación de expresión de constante que corresponde. En este caso trabajaremos con coeficientes estequiométricos no todos iguales a uno y que nos permitirá introducir el concepto de grado de reacción además de otras particularidades propias del tema.

LOS ACIDOS Y LAS BASES

Ya hemos estudiado varias veces la identidad de los ácidos y las bases y sus reacciones, principalmente las que ocurren en medios acuosos. Repasemos.

Mejor que un nuevo tipo de compuestos habría que señalar que son compuestos que poseen una propiedad relacionada a la reacción de disociación del agua y a los iones que allí son liberados:

H2O

H2O = H + + OH

ión hidrógeno ión hidroxilo

ACIDOS son sustancias de fórmula general HA que se disocian en agua liberando el ión hidrógeno (Definición de Arrehenius)

H2O

HA = H + + A

ácido ión hidrógeno anión del ácido

EL pH , EL GRADO α Y EL PORCENTAJE DE DISOCIACIÓN

DE ACIDOS Y BASES DEBILES

Acidos y bases débiles, al igual que las sales insolubles o muy poco solubles, son aquellas que alcanzan la posición de equilibrio a muy poco andar de la reacción de disociación. Los valores de las constantes son 10-2 y menores y los x, grados y % disociación son muy pequeños.





SOLUCIONES REGULADORAS DEL pH O DE EFECTO DE UN IÓN COMÚN

Este un caso donde concurren al menos tres situaciones de las ya estudiadas en este capítulo de equilibrio.

En primer lugar de trata de un caso de disociación de un ácido débil HA cuya constante de disociación se conoce.

Este primer caso se combina con la disolución de una sal completamente soluble de Na+ o K+ pero cuyo anión es el mismo anión que el que tiene el ácido débil , o sea la sal es NaA o KA completamente soluble.

Por tratarse del mismo anión se produce el efecto del ión común cual es desfavorecer la disociación del ácido.

Por último se forma un sistema capaz de resistir, en virtud del principio de Le Chatelier y con gran capacidad, las variaciones del pH inducidas externamente.


viernes, 16 de julio de 2010

MAGNITUDES FUNDAMENTALES DEL CAMBIO QUIMICO

INTRODUCCIÓN A LOS CALCULOS ESTEQUIOMÉTRICOS

EJERCICIOS ESPECIALES INTRODUCTORIOS DE LA ESTEQUIOMETRÍA CON CONDICIONES NORMALES Y ECUACIÓN DE LOS GASES. Ar A = 9 g/mol; Ar B = 16 g/mol y Ar C = 1 g/mol

-Dn N2 / 1 = -Dn H2 / 3 = +Dn NH3 / 2 = X

Esta relación es, para este caso, la importante CONDICIÓN DE ESTEQUIOMETRÍA

b.- El gráfico de X en función del tiempo.











La razón de transformación X = Dn / Coeficiente Estequiométrico, es también asociada a la coordenada de avance de la reacción, en este caso, el avance es lineal e igual en relación al tiempo puesto que hemos señalado que " reacciona 1 mol de N2 por cada unidad de tiempo transcurrido ". Sin embargo la relación puede ser de otro tipo (una curva de cualquier tipo) y está relacionada con el concepto de velocidad de la reacción.

EN LOS GRÁFICOS LA COORDENADA DE AVANCE DE REACCIÓN X SE SEÑALA COMO R.

c.- Gráfico de los nt de todas las especies en función de X.











CALCULOS ESTEQUIOMETRICOS

Se refieren a la determinación de las cantidades de Sustancias ( A,B,C y D ) involucradas en una determinada reacción química.

Sea a A + b B = c C + d D la ecuación de la reacción general, donde a,b,c y d son los respectivos Coeficientes Estequiométricos.

Sean niA , niB ,niC , niD la cantidad de moles de los reactivos y productos en el instante inicial de la reacción (tiempo = 0)

Sean ntA , ntB ,ntC , ntD la cantidad de moles de los reactivos y productos en el instante t desde el momento inicial de la reacción ( tiempo = t )

Transcurrido el tiempo t, cada una de las sustancias ha variado como consecuencia de la reacción, ya sea desapareciendo (Reactivos) o bién apareciendo (Productos) en las siguientes cantidades.

D nA = ntA - niA ; D nB = ntB - niB ; D nC = ntC - niC ; D nD = ntD - niD

Debe notarse que D nA = ntA - niA y D nB = ntB - niB son negativos, porque en el instante t hay menos moles de A y B que al comienzo( porque los reactivos se consumen)

Debe notarse que D nC = ntC - niC y D nD = ntD - niD son positivos, porque en el instante t hay más moles de C y D que al comienzo( porque los productos se originan o aparecen)

La Condición de Estequiometría establece:

- D nA / a = - D nB / b = D nC / c = D nD / d = ..... = X

Es la forma matemática de indicar que cada sustancia reacciona en cantidad de moles que es proporcional al respectivo coeficiente estequiométrico. Las expresión relaciona las cantidades de moles que reaccionan, de todas las sustancias, en todo instante.






LA VALORACIÓN O TITULACIÓN

El análisis químico cuantitativo determina las cantidades de sustancia presentes en distintos sistemas. Lo hace con técnicas de gravimetría, o sea el uso de métodos basados en pesar sustancias en balanzas de precisión. Con técnicas de volumetría, métodos basado en la medición de volumenes de soluciones. Con la espectroscopía, basada en métodos ópticos y electrónicos etc. Las técnicas de la Volumetría descansan fundamentalmente en las denominadas Valoración o Titulación, o sea las que determinan el valor de la concentración o el Título de una solución.

La Titulación o Valoración se basa en una reacción química y por lo tanto habrá tantos tipos de Titulaciones como tipos de reacciones que sirvan a propósitos de cuantificación. Se conocen titulaciones de formación de precipitados, de formación de complejos, de ácidos con bases, de oxido reducción etc.

Como la Titulación tiene propósitos cuantitativos la la ecuación de la reacción involucrada y la CONDICIÓN DE ESTEQUIOMETRÍA que de ella se deriva son los elementos fundamental del asunto.

REACCIONES DE NEUTRALIZACIÓN DE ACIDOS CON BASES

LAS SALES ( RESULTADO DE LA REACCION DE ACIDOS + BASES )

OXÁCIDOS + BASES = SAL + AGUA

m H+12 N+n2 O-2n+1 + 2 M+m ( O H )- m = M+m2 ( ( N+n2 O-2n+1 ) –2)m + 2m H2O

Ejemplo:

3 H+12 S+6 O -24 + 2 Al+3 ( O H)-3 = Al+32 ((S+6 O –24) -2)3 + 6 H2O

( 3 H2 S O4 + 2 Al ( O H) 3 = Al 2 (S O4) 3 + 6 H2O )

Acido Sulfúrico Hidróxido de Aluminio Sulfato de Aluminio Agua

HIDRACIDOS + BASES = SAL + AGUA

m H+1n N – n + n M+m ( O H )m = M+mn N – nm + mn H 2 O

ESTANDARIZACIÓN DE LA BASE

Haremos la titulación de la solución de NaOH usando ácido oxálico dihidratado, C2O4H2 x 2 H2O, que por presentarse en estado sólido podemos cuantificar fácil, exacta y precisamente pesándolo en una balanza analítica de precisión.

LA ENERGIA Y LA COORDENADA DE LA REACCIÓN

INTRODUCCIÓN

Las reacciones químicas son procesos dinámicos en cuanto son procesos que involucran cambios o reordenamientos de los átomos. El aspecto dinámico de las transformaciones, esto es la velocidad de los procesos y los factores que la determinan los estudia la Cinética Química en tanto que la descripción pormenorizada de los reordenamientos o mecanismos de reacción los estudia la Mecanística Química.

Un conocimiento profundo de las dinámica cobra especial importancia en aquellas reacciones que tienen la posibilidad de reversibilidad, es decir reacciones que al "devolverse" no se completan pero que tampoco vuelven al punto de partida. Se trata de situaciones que podríamos señalar que quedan "a medio camino". Estas situaciones, bastante comunes y de gran importancia teórica y práctica, son objeto de estudio del tema denominado Equilibrio Químico.

Los sistemas moleculares poseen energías que pueden asociarse a diferentes subsistemas, por ejemplo energía en el nucleo, energía electrónica, energía potencial y vibración en los enlaces, energía cinética de rotación y translación molecular.

Para visualizar los 2 ultimos conceptos de energía mencionados podemos recurrir al siguiente ejemplo de un resorte en:

a) reposo y libre b) reposo y enroscado c) movimiento y libre d) movimiento y enroscado








La magnitud de los flujos de energía en las reacciones ( Calor de Reacción) dependen de la energía que en cada instante contienen o almacenan las moléculas u otras entidades químicas involucradas en los procesos de transformación. Las energía latentes o potenciales determinan el perfil energético de la transformación.

Para la reacción: A-B + C-D = A-C + B-D








DEFINICIONES DE VELOCIDAD DE REACCION.

Una primera definición, de caracter extensivo, para la velocidad de reacción es : es el cuociente entre la variación del número de moles de una sustancia R como consecuencia de una reacción y el lapso de tiempo en que ocurre tal variación.

Velocidad de reacción = v R = Δ n R / Δ t ( mol / s)

FACTORES QUE DETERMINAN LAS VELOCIDADES DE REACCIÓN

INFLUENCIA DE LA TEMPERATURA EN LA VELOCIDAD DE REACCION.

Ya sabemos que el estado de transición es un estado de alta energía potencial. Tal energía potencial se alcanza por absorción de radiaciones electromagnéticas o bien, como ocurre en la mayor parte de las reacciones químicas, obtenida por la conversión de la energía cinética ( movimiento) en potencial en el momento del choque entre moléculas.

Sabemos también que la energía cinética de los sistemas moleculares se relaciona o es proporcional a la temperatura. Para tener más claridad al respecto observemos el siguiente gráfico que muestra: a) la distribución de la energía cinética en un sistema de moléculas y b) la variación de tal distribución al aumentar la temperatura del sistema molecular








SOLUCIONES

Las sustancias presentes en sistemas simples se denominan:

Soluto : Componente (s) que se encuentra (n) , comparativamente, en menor proporción y

Solvente : Componente que se encuentra, comparativamente en mayor proporción.

Sin embargo, cuando una sustancia originalmente sólida es disuelta en líquido es el soluto y el líquido es el solvente.

Similarmente, cuando una sustancia originalmente gas es disuelta en líquido es el soluto y el líquido es el solvente.

Sistemas de Solubilidad infinita

El soluto y el solvente se mezclan en proporciones variables, algunas veces sin limitaciones. Los gases se mezclan entre sí sin limitaciones, los líquidos de igual polaridad o apolaridad también se mezclan sin limitaciones. Son situaciones de solubilidad infinita. El concepto de solubilidad ya ha sido presentado con anterioridad.

Sistemas Saturados

Las limitaciones aparecen con mucha claridad cuando se mezclan sustancia originalmente sólida o bién originalmente gas con líquidos. Estas situaciones límites se analizan fundamentalmente usando el concepto de solubilidad y que ahora parece oportuno volver a recordar.

La solubilidad es la mayor cantidad de soluto, que en forma estable, puede disolverse (mezclarse) en una determinada cantidad de solvente bajo condiciones determinadas de Presión y Temperatura.













Sistemas Sobresaturados.

En algunas situaciones la cantidad de soluto disuelta es mayor que la que corresponde a la solubilidad ?, pero es una situación inestable y se conoce como sobresaturación. Se obtienen llevando al sistema a la situación de saturación a alta temperatura y se baja bruscamente la temperatura. Mientras el sistema no se estabilice se encuentra en situación de sobresaturación. El sistema vuelve a la normalidad cuando se den las condiciones cinéticas para que el soluto en exceso precipite como sólido o bién sea liberado como gas.

Sistemas Diluídos.

Son aquellos en que la cantidad de soluto disuelto es menor que la que corresponde por la Solubilidad. Son los casos más numerosos y en torno de ellos se desarrolla el tema de Soluciones y sus propiedades.

Relaciones fundamentales para el trabajo cuantitativo con soluciones.

En primer lugar, para trabajar cuantitatívamente con soluciones es preciso visualizar los componentes del sistema para asignar sin confusiones los conceptos de soluto, solvente, solución, las respectivas masas, volumenes y densidades. El siguiente gráfico puede ayudar en ese sentido:

















LA CONCENTRACION DE LAS SOLUCIONES

La forma usada para caracterizar una solución, luego de especificar el soluto y el solvente, es establecer la relación entre las cantidades de ellos. Esta relación es la Concentración, que implica un cuociente entre una cantidad de soluto y una cantidad de solución, o bien de solvente. Nuevamente por ser la concentración un cuociente entre magnitudes Extensivas es una magnitud Intensiva.












Existen varias formas de expresar la concentración, las mostraremos en el gráfico siguiente, indicando las ecuaciónes que las definen y mostrando un ejemplo de su cálculo con los datos del sistema ya entregados:

















CONVERSIÓN DE UNIDADES DE CONCENTRACIÓN

Dato inicial Concentración Ecuación de definición Base de calculo Cantidad de soluto

A % p/p % p/p = (MASAsoluto(g) / MASAsolución(g))*100 100g.solución A g.de soluto

A M M = n soluto / V (L) solución 1(L) solución A moles soluto

A m m = n soluto / MASA solvente(Kg) 1Kg. solvente A moles soluto

X soluto = A X soluto = n soluto/(nsoluto + nsolvente) (nsoluto + n solvente) =1 A moles soluto

Ejemplo:









PREPARACIÓN DE SOLUCIONES

En este punto es conveniente decir que las expresiones encerradas por marcos rojos en el gráfico de definición de unidades de concentración, además de ser la definición matemática de una determinada forma de concentración, son ecuaciones matemáticas que pueden y deben ser operadas con las reglas del Algebra. El alumno deberá ser capaz de despejar la variable que interese, establecer cadenas de ecuaciones etc. Además, el alumno deberá prestar especial atención al significado de cada una de las variables visualizándolas mentalmente junto al sistema que se trate en cada caso . Una vez más se insta al alumno en este curso a usar el Algebra y abandonar el uso de las reglas de tres, procedimiento mecánico que puede conducir a graves errores.

PREPARACIÓN DE UNA SOLUCIÓN A PARTIR DE OTRA SOLUCIÓN CONCENTRADA

A modo de ejemplo de lo que se preconiza se presenta la siguiente situación problemática de preparación de una solución a partir de una solución concentrada ( la misma solución con que se trabajó en el primer problema de conversión de unidades).



















LA CANTIDAD DE SOLUTO

Nunca es insistir demasiado en el trabajo con las ecuaciones de definición como expresiones algebraicas. En varias ocasiones ya hemos determinado la cantidad de moles de soluto que teóricamente debe tener una solución para cumplir los requisitos de Molaridad y Volumen de solución. Utilizamos la expresión:

n soluto = M * Vsolución(L) ; que se deriva de la definición de Molaridad.

Así también podríamos utilizar las fórmulas:

n soluto = m * MASA solvente (Kg) que se deriva de la definición de molalidad,

MASA soluto (g) = (% p/p * MASA solución (g)) / 100 que se deriva de la definición de % p/p etc.

Ejemplo:







CAMBIOS DE CONCENTRACIÓN POR VARIACIÓN DE LA CANTIDAD DE SOLVENTE

Se trata de operaciones de manejo de soluciones en que la cantidad de soluto permanece constante.

Cuándo a una solución se le agrega solvente, la concentración disminuye a otro valor, cuanto menor mientras mayor sea la cantidad de solvente agregado. El proceso se llama "dilución".

Si por el contrario, a una solución se le quita cierta cantidad de solvente, por evaporación, la concentración se incrementa proporcionalmente a la cantidad de solvente evaporado. La acción de aumentar la concentración por evaporación del solvente se llama "concentrar"

PREPARACIÓN DE UNA SOLUCIÓN MÁS DILUIDA A PARTIR DE OTRA DE BAJA CONCENTRACIÓN.

Otra forma de preparar soluciones es por "dilución" de una más "concentrada". Se toma un determinado volumen de la solución más concentrada con una pipeta y se vacía en un matraz aforado de capacidad adecuada.

PROPIEDADES DE SOLUCIONES

EL ESTADO LIQUIDO

Previo a adentrarse en el tema anunciado es necesario referirse a ciertas propiedades de los sistemas en estado líquido.

Los líquidos se obtienen ya sea por fusión de los sólidos o condensación de los gases, en relación a estos fenómenos veamos unos gráficos...





PROPIEDADES COLIGATIVAS DE SOLUCIONES.

Las propiedades de soluciones que veremos a continuación reciben el nombre de coligativas dado que sus magnitudes dependen de la concentración del soluto, o mejor, del número de partículas o moléculas del soluto en la solución y no de la naturaleza o tipo de soluto.

PRESIÓN DE VAPOR DE LAS SOLUCIONES

Ley de Raoult

La presencia de otra sustancia (B) disminuye la presión de vapor de un determinado líquido (A). La evaporación es un fenómeno de naturaleza estadística donde las probabilidades que el fenómeno ocurra es proporcional al número de moléculas. Si el número de moléculas relativo de un componente disminuye también lo hacen las velocidades de evaporación y condensación y el equilibrio se establece con un menor contenido de moléculas en la fase gaseosa. La relación entre las presiones de vapor de un líquido puro y la presión de vapor de tal líquido actuando como solvente, a la misma temperatura, está dada por la ley de Raoult.











PRESIÓN OSMOTICA

Un fenómeno de flujo sólo de solvente y nada de soluto a través de membranas semipermeables para disminuir gradientes de concentración es de importancia a nivel celular en organismos biológicos por los efectos de presión que se generan y que afectan las estructuras.







APLICACIONES DEL CONCEPTO DE MOL

EL CONCEPTO DE MOL Y SUS APLICACIONES

La Química cuantitativa comienza con la pregunta fundamental.

¿ Qué cantidad de átomos del elemento hay en el Peso Atómico del elemento expresado en gramos?

Daremos la respuesta más simple, en base a un experimento también simple esquematizado en el siguiente gráfico.










DEFINICIÓN DE MOL

Un Mol es 6,023 10 23 unidades.

Así el mol pasa a ser una forma adecuada de medir cantidades de partículas de la química, como recién lo dijimos, podemos medir cómodamente un mol de átomos de Vanadio o un mol de átomos de cualquier otro elemento en la balanza de una confitería.

Pero el Número de Avogadro de átomos es una cantidad tan grande de átomos o bién los átomos son tan pequeños y livianos que son magnitudes que desafían nuestra imaginación. Según nos hizo notar recientemente un colega, si tuvieramos una hilera de 1 mol de hormigas de 1mm cada una separadas cada una de la precedente por una distancia también de 1mm, la longitud de la hilera cubriría 1,2046 10 18 Km. Tal hilera cubriría mil doscientos setenta y ocho millones de veces la trayectoria circular de la Tierra alrededor del Sol.

NUEVA DEFINICIÓN DE PESO ATOMICO

El Peso Atómico de un elemento ( A r ) es la masa de un mol de átomos de tal elemento expresada gramos.

Sus unidades de medidas serán por consiguiente gramos / Mol de átomos

Es conveniente comprender la correspondencia entre los elementos del siguiente triángulo de conceptos.








EL MOL DE MOLECULAS

Volvamos a nuestra experiencia de recolección de Helio puesto que podemos sacar mucho más provecho de ella y coloquemos a nuestro sistema en situación comparativa con otros.








DEFINICIÓN DE PESO MOLECULAR

El Peso Molecular ( M r ) de una sustancia es la masa de un mol de moléculas de tal sustancia expresada en gramos.

Sus unidades de medidas serán por consiguiente gramos / Mol de moléculas

Otra vez es conveniente comprender la correspondencia entre los elementos de este nuevo triángulo de conceptos.





CALCULO DEL PESO MOLECULAR

Generalizando, si una Sustancia tiene por Fórmula AaBbCc........

A nivel submicroscópico su molécula está formada por a átomos de A, b átomos de B y c átomos de C etc...

y a nivel macroscópico el mol de moléculas está formada por a moles de átomos de A, b moles de átomos de B y c moles de átomos átomos de C etc... y de allí que el Peso Molecular se calcule con la siguiente fórmula.

Mr AaBbCc........ = a * Ar A + b * Ar B + c * Ar C +........

NOTACIÓN QUÍMICA

Nivel Submicrocópico Nivel Macroscópico

SÍMBOLO

1 átomo 1 mol de átomos








FÓRMULA

1 molécula 1 mol de moléculas





ECUACIÓN

1 reordenamiento

1 mol de reordenamientos












TRABAJO CON FRACCIONES DE MOLES

EJERCICIO DE PRESENTACIÓN DE RELACIONES DE CALCULO

Dados 0,16 g. de metano gaseoso ( CH4 ).

¿Cuántos moles de moléculas son? Ar C = 12 ; Ar H = 1

M r = 1 * 12 + 4 * 1 = 16 (g/mol)

n = N° moles de moléculas Sustancia = masa Sustancia / M r Sustancia =

= 0,16 (g) / 16 (g/mol) = 0,01 moles de moléculas.

PROPIEDADES INTENSIVAS Son aquellas propiedades del sistema cuyo valor no depende del tamaño del mismo, es decir son independientes de la masa del sistema.

PROPIEDADES EXTENSIVAS Son aquellas propiedades del sistema cuyo valor depende del tamaño del mismo, es decir son dependientes de la masa del sistema.

La composición de un sistema expresada en % en peso es una magnitud INTENSIVA.

Una magnitud intensiva debe poder calcularse con una relación independiente del tamaño del sistema.


LA ECUACIÓN DE ESTADO DE LOS GASES IDEALES.

Para dar adecuada respuesta a la pregunta planteada es necesario averiguar las relaciones matemáticas que expresan el comportamiento de las distintas variables que determinan el estado de un sistema gaseoso. Un sistema gaseoso se encuentra en un estado definido cuando, además de precisarse la naturaleza del gas, se conocen tres de las siguientes cuatro variables:

n = Número de moles, V = Volumen, P = Presión y t = temperatura.

Para comenzar el estudio de las relaciones es conveniente definir el Volumen Molar

Volumen Molar = V = V / n (L/mol)

Ley de Boyle

Volumen Molar vs. Presión













Ley de Charles

Volumen Molar vs. temperatura






MÉTODO DE DETERMINACIÓN DEL PESO MOLECULAR

La determinación experimental del valor de Mr es de fundamental importancia cuando no se conoce la fórmula de alguna sustancia. Si la sustancia se puede evaporar podemos aplicar la ecuación anterior pero para calcular el Peso Molecular.

Mr = densidad P,T RT / P








DETERMINACIÓN

DE FÓRMULAS EMPÍRICAS Y MOLECULARES

Mostraremos a continuación la forma sistemática de determinar las fórmulas empíricas y las moleculares haciendo uso de los conceptos de Ar y Mr.

ANALISIS QUÍMICO _ Ar__> FÓRMULA EMPÍRICA _Mr_> FÓRMULA MOLECULAR

Composición % Relación en el número de Atomos Número Exacto de átomos

Los datos de composición de un compuesto entregados por el Análisis Químico a la forma de composición porcentual de los elementos, es por lo general, el punto de partida. Como ya hemos establecido éstas magnitudes son de tipo Intensivas. Sin embargo, para poder calcular el número de moles de átomos, que es esencialmente de tipo extensivo, es preciso trabajar con un sistema de tamaño definido y adecuado a los datos y cálculos. Esto es, nos damos una Base de Cálculo (B.C.),por lo general 100 g. de la Sustancia, y así trabajamos con masas determinadas de los diferentes elementos.